

Combustible Dust Hazards

Central Ohio ASSE/Central Ohio CHMM March 18, 2016

Topics

- Background
- What is combustible dust?
- What are the hazards of combustible dusts?
- Severity
- Dust, Fire and Explosive Pentagon
- Regulations
- Hazard Assessments
- Prevention and Mitigation of Combustible Dust events

Background

- First documented dust explosion
 - -1785
 - Bakery
 - Turin, Italy
 - Cause
 - Lamp → Flour dust
 - No fatalities

Background

- 1985-2005
 - 119 Deaths
 - 718 Injured
- 1996-2005
 - 106 Explosions

- 2006-2008
 - 82 Explosions
- 2008-2012
 - 50 accidents
 - 29 fatalities
 - 161 injuries

1981, Grain Elevator, Corpus Christi, TX

- 9 Fatalities
- 20-30 Injuries
- >\$30 Million
 Damages

- Causes
 - Smoldering grain
 - Milo Dust

2008, Imperial Sugar, Port Wentworth, GA

- 14 Deaths
- 36 Injuries

The Problem

- Unaware of the dust explosion potential
- Failed to recognize the seriousness of dust explosion hazards
- Information was not contained on MSDS
 - 41% of reviewed MSDS did not contain information about combustible dust hazards
 - 59% most of the information was not adequately stated

The Problem

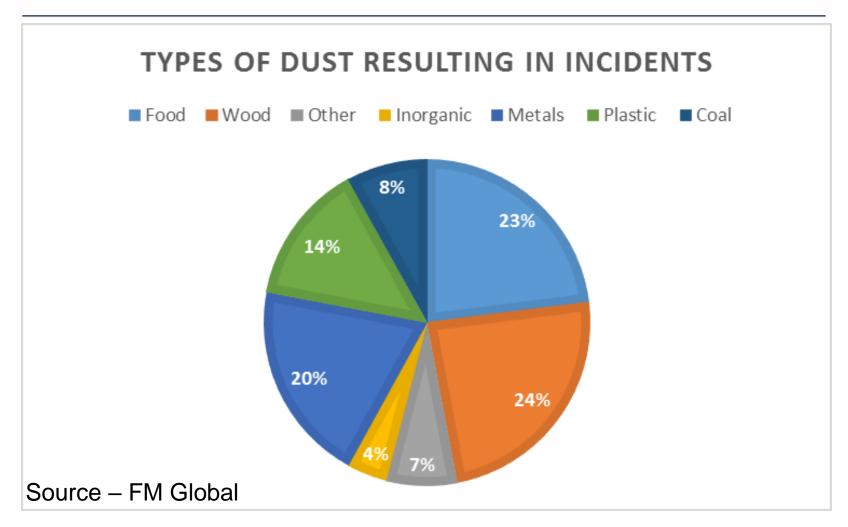
- Less than 1/32" combustible dust is needed in suspension to be explosive.
- The thickness of a dime (~1/16") is twice the amount needed to be deadly.

What is Combustible Dust? - OSHA

 Combustible dust is defined as a solid material composed of distinct particles or pieces, regardless of size, shape, or chemical composition, which presents a fire or deflagration hazard when suspended in air or some other oxidizing medium over a range of concentrations.

What is Combustible Dust? – NFPA 654

- "Any finely divided solid material that is 420 microns or smaller in diameter (material passing a U.S. No. 40 Standard Sieve) and presents a fire or explosion hazard when dispersed and ignited in air."
- A combustible particulate solid that presents a fire or deflagration hazard when suspended in air or other oxidizing media over a range of concentrations regardless of particulate size or shape. (NFPA – 2006 ed.)


What Is Combustible Dust?

 The simple definition – any fine material that is able to catch fire and explode when mixed with air.

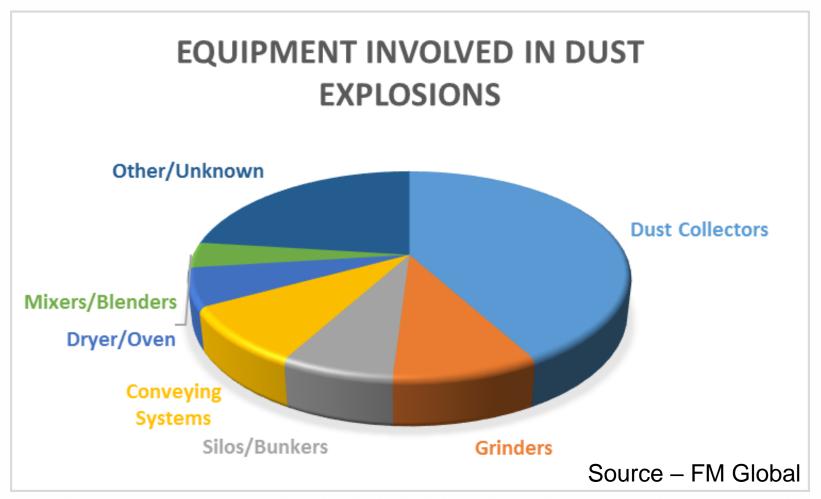
Where Is Combustible Dust?

- Agricultural
- Carbonaceous
- Chemical
- Metal
- Plastic

Types of Dust Causing Combustible Incidents

Where Is Combustible Dust?

- Wood Processing
 - Paper
 - Furniture
- Textiles
- Pharmaceuticals
- Food
- Agriculture

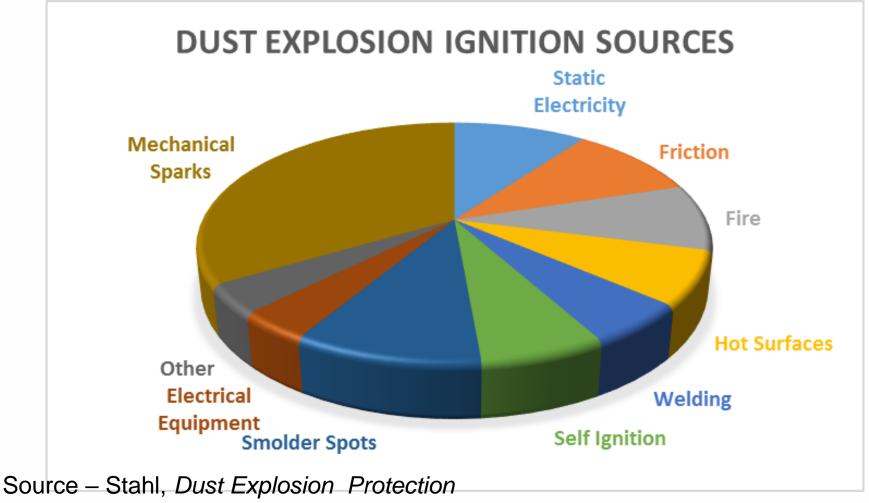

- Metal Processing
- Tire and Rubber
- Chemicals

Combustible Dust Producing Operations

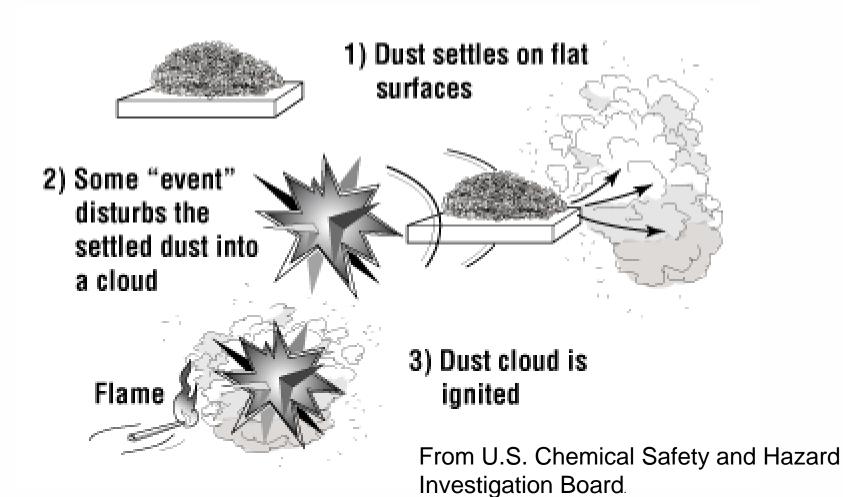
- Material
 - Abrasive Blasting
 - Cutting
 - Grinding
 - Polishing
 - Crushing

- Dry Material
 - Conveying
 - Mixing
 - Sifting
 - Screening
- Buildup dried residue from wet materials

Equipment Involved in Dust Explosions


Dust Explosion Conditions

- Combustible
- Dry
- Sustain the Fire Release of high heat
- Small particle size Spread the flame
- Capable of being suspended in air
- Concentration to cause an explosion (MEC)
- Ignition source near dust suspension
- Sufficient oxygen
- Confinement to build pressure


Dust Explosion Conditions

- Check SDS for material
- Moisture content
- Materials may change while being processed

Ignition Sources of Dust Explosions

Combustible Dust Explosion

Dust Explosion Pentagon

- Combustible Dust Fuel Source
- Heat Ignition Source
- Oxygen in Air Oxidizer
- Dispersion of Dust Particles
 - Sufficient Quantity
 - Sufficient Concentration
- Confinement of Dust Cloud

Primary and Secondary Explosions

- Initial (Primary) Explosion
 - Shake loose accumulated dust
 - Damage containment system
 - Dust becomes airborne
- Secondary Explosion
 - Ignition of dust created by primary explosion

A Dust Explosion Event in MSec.

•	vent Primary Deflagration Inside Process Equipment	Elapsed Time			
•	Shockwave Caused by Primary Deflagration	25			
•	 Bldg Surface Reflects Shockwaves; Accumulated Dust into Suspension 				
•	Dust Clouds formed in Air by Shockwaves 62				
•	Source of Ignition Created by Primary Deflagration 80 Breaking out of the Equipment Enclosure				
•	Ignition of Secondary Deflagration	130			
•	Propagation of Secondary Deflagration Through Dust Clouds	200			
ŀ	EXPERTISE. INNOVATION. COM	MMITMENT.			

Deflagration

- An exothermic reaction, such as the extremely rapid oxidation of a flammable dust or vapor in air, in which the reaction progresses through the unburned material at a rate less than the velocity of sound. A deflagration can have an explosive effect.
 - Section 2702 of the International Fire Code (IFC)

Particle Size Exceptions

- Larger particles can still deflagrate
 - Abrade → Smaller particles
- Particles agglomerate then separate into smaller particles

Video

Combustible Dust Measurements

- K_{st} Dust Deflagration Index, relative explosive severity compared to other dusts.
- MEC, The Minimum Explosive Concentration, measures the minimum amount of dust dispersed in air required to spread an explosion. (Analogous to LFL/LEL)
- MIE, The Minimum Ignition Temperature, which predicts, the ease and likelihood of ignition of a dispersed dust cloud
- Dust Layer

Dust Explosiveness

K_{st} Values for Different Dust Types

Dust Explosion Class*	K _{st} (bar.m/s	Characteristic*	Typical Material**
St 0	0	No Explosion	Silica
St 1	> 0 <= 200	Weak Explosion	Charcoal, Powedered Milk, Sugar, Sulfur, Zinc
St 2	>200 <=300	Strong Explosion	Cellulose, Poly Methyl Acrylate, Wood Flour
St 3	< 300	Very Strong Explosion	Aluminium, Anthraquione, Magnesium

The actual explosion class depends on the sample and may vary due to characteristics such as moisture content, shape and particle size.

^{*} OSHA CPL 03-00-008 – Combustible Dust Emphasis Program.

^{**} NFPA 68, Standard on Explosion Prevention by Deflagration Venting.

OSHA Regs. Related to Combustible Dust

- 1910.22 Housekeeping
- 1910.269 Electric Power Generation, Transmission and Distribution (Coal Handling)
- 1910.272 Grain Handling Facilities
- 1910.307 Hazardous Locations
- 1910.1200 Hazard Communication
- Combustible Dust National Emphasis Program
- Safety & Health Information Bulletin 07-31-2005
 - Combustible Dust in Industry

OSHA's Response

- Combustible Dust National Emphasis Program (NEP)
 - October 18, 2007
 - Inspect facilities that generate or handle combustible dusts that pose a deflagration/explosion or other fire hazard
 - 64 Types of Industries

OSHA Regs. Related to Combustible Dust

- General Duty Clause, Section 5(a)(1)
 - Airborne fugitive dust
 - Excessive dust
 - Ungrounded ducts and ventilation systems
 - Prevention of deflagration not provided in dust collection system
 - Interior dust prevention systems

OSHA Regs. Related to Combustible Dust

- 1910.22 General Requirements Housekeeping
- 1910.38 Emergency Action Plan
- 1910.39 Fire Prevention Plan
- 1910.157 Portable Fire Extinguishers
- 1910.165 Employee Alarm Systems
- 1910.94 Ventilation
- 1910.119 Process Safety Management
- 1910.132 Personal Protective Equipment
- 1910.176 Material Handling and Storage

OSHA Regs. Related to Combustible Dust, Cont'd

- 1910.178 Industrial Forklifts
- 1910.263 Bakery Equipment
- 1910.265 Sawmill Operations
- 1910.272 Grain Handling Facilities
- 1910.307 Hazardous Locations
- 1910.1200 Hazard Communication

OAC 1301:7-7-13

- Sources of Ignition
- Housekeeping
- Explosion Protection Standards authorizes the fire code official to enforce (NFPA) to prevent and control dust explosions

OAC 1301:7-7-13/NFPA

Standard	Subject
NFPA 61 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Agriculture and food products
NFPA 69 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Explosion prevention
NFPA 70 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	National Electrical Code
NFPA 85 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Boiler and combustion systems hazards
NFPA 120 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Coal preparation plants
NFPA 484 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Combustible metals, metal powders and metal dusts
NFPA 654 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Manufacturing, processing and handling of combustible particulate solids
NFPA 655 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Prevention of sulfur fires and explosions
NFPA 664 as listed in rule <u>1301:7-7-47</u> of the Administrative Code	Prevention of fires and explosions in wood processing and woodworking facilities

2014, Portage Precision Polymers, Ravenna, OH

- Serious Violation
- Workers were exposed to the combustible dust while working in the facility.
- Possible explosive hazard

Prevention – Hazard Assessment

- Identify materials and processes that could generate dust
- Determine how those dusts may become dispersed in air
- Identify potential ignition sources
- Identify duct accumulation areas (open and "hidden")
- Identify where special electrical equipment must be used

Prevention – Hazard Assessment

- Review SDSs
 - SDSs are required to determine hazards
 - Many SDSs do not include explosibility
 - A hazard evaluation is required to be conducted to consider <u>all</u> discernible hazards.
 - This includes explosibility.

Prevention – Hazard Assessment

- Conduct internal and external audits
- Encourage employees to engage in preventative measures to eliminate dust explosions
- Train employees on how to recognize potential dust combustibility hazards
- Identify explosion hazards through JHAs

Prevention - Housekeeping

- Ensure that facility is as dust free as possible
- Develop, implement and maintain a written housekeeping program
- Consistently inspect potential accumulation areas, especially "hidden" areas
 - Have a regular schedule for "dust" cleaning
 - Ensure that equipment is safe to be used
 - Vacuums rated Class II Div 1
 - Ensure that dust is removed from the area

Prevention - Housekeeping

- Use cleaning methods that do not generate dust clouds.
- Clean outside air source shall be obtained for comfort heating equipment

Prevention – Ignition Sources

- Hazardous Area Classification depends on the following:
 - The properties of the liquids, gases,
 flammable vapors or gases, or combustible dusts that may be present
 - The likelihood that a combustible concentration or quantity is present
- Combustible dust is classified as Class II

Prevention – Ignition Sources

- Group E Atmospheres contain combustible metal dusts
- Group F Atmospheres contain carbon dusts that have greater than 8% entrapped volatiles or have been sensitized by other materials so that they present an explosion hazard
- Group G Atmospheres contain combustible dusts not included in Group E or F.

Prevention – Ignition Sources

- Electrical Equipment
 - Class II, Div 1 and 2 rated
 - Should not generate mechanical sparks and/or friction
 - No open flames
 - No welding, cutting or grinding without a Hot Work
 Permit
 - Minimize the use of tools and vehicles
 - Eliminate potential static electricity generation
 - Ensure proper bonding and grounding

Prevention – Engineering Controls

- Clean and change filter bags on dust collectors no less than what is recommended by the manufacturer.
- Clean out dust cyclone holding bins at regularly scheduled intervals no less than what is recommended by the manufacturer.
- Limit and control potential ignition sources.

Prevention – Engineering Controls

- Install dust control systems such as filters and cyclones.
- Provide a clean, outside air source for comfort heating equipment

Prevention - Fire

- Implement a fire prevention and control plan.
- Ensure that combustible dust is covered in the facility fire prevention plan
 - Sources
 - Mitigation/Prevention
 - Firefighting equipment

Prevention - Fire

- Ensure that fire protection equipment is inspected and in good repair.
- Ensure that bonding and grounding is practiced.

Prevention - Explosion

- Containment
 - Withstand the pressure without rupture
- Explosion Isolation
 - Prevents the explosion from propagating to other equipment
- Explosion Suppression
 - Detect the buildup of pressure
 - Apply suppression
- Explosion Vents
 - Prevent buildup of excessive pressure
 - Location is important

Questions

David Barr

Compliance Manager

August Mack

Environmental

dbarr@augustmack.com

740-548-1507